3 phase electricity Waterheatertimer.org
is a self-help site
Replace water heater element Figure Volts Amps Watts for water heater How to wire tankless electric
How to install point of use water heater Point of use water heater
Compare 16 electric and 3 gas water heater timers Troubleshoot Rheem tankless Figure correct wire and breaker 9 ways to save with water heater
How to install recirculation system Point of use water heater
T100 series timers Programmable wall timers Auto-off timers Box timers How to set timers
Troubleshoot electric water heater Troubleshoot gas water heater How to wire tankless electric How to wire subpanel
Type 1 and type 2 surge protection surge protection
Search waterheatertimer.org / all results
Search using Find button  

 Tweet button  

What is 3-phase electric/ Power transmission from generator to end user

power generation

Power Generation Book

Co-generation is growing market as demand for reliable energy grows.
Book by Singh covers the basics, and the engineering math. Future business and industry leaders should be aware of the complexity and variability of electricity.

Buy Related Books:
Power generation by Singh
3-phase power generation book at Amazon
Electric Power generation books at Amazon
3-phase wiring books at Amazon
Overhead conductor

Basic How to wire 3-phase with illustrations and .pdf resources
electric book

Lineman's Books

Practical application and terminology/ not mathematical 

Buy from my affiliate links
Lineman's electric book
Overhead conductor
solar power books

Solar power books

Learn the basics with tips and help for professional and beginner alike

Buy from my affiliate links:
Solar power books

Basic electric Book

Best basic electric book
Electric book series
Basic electricity/ AC DC/
Basic electric book/ very detailed
Wiring a house

Resource: Learn from my simple illustrations and wiring:
Do it yourself electric

Water heater formulas/ pdf
Water heater formulas 2/ pdf
Troubleshot household electricity
What is 3-phase
See inside household electricity
Basic home electricity
Figure volts amps watts
3-phase electric
500,000 Volt towers
Power company generates 3 phase electricity
and transmits electricity across high voltage lines....
Steam turbine or gas engine rotates magnet inside magnetic field. Generating electricity.

3-phase generator
Generator illustration:
Larger image

Steam turbine or gas engine rotates magnet inside magnetic field. This is a generator

The generator has 3 separate stationary coils A B C, and each coil produces a pulse of electricity each time magnet rotates. Pulses of electricity reverse each time N and S poles of magnet pass. This is called alternating current. In the US, the generator rotates 60 times each second (60 hertz or 60 cycles).  Each of the 3 coils is 1/3 rotation behind the other. The result is 3 separate pulses of electricity, each pulse is out-of-phase with the other. This produces a three phase wave of electricity that is transmitted from the generator across 3 separate wires. The entire grid is energized with current that oscillates at 60 cycles per second.  In other countries, the grid is 50 cycles.  Appliances and timers made for 60Hz might not work with 50 Hz etc, while some devices are rated 50-60Hz and will work worldwide.

3 oscillating pulses of electricity leave generator

Why use 3-phase?

Electricity is mathematical
Equations show that 3 phase curve produces more average power. 3-phase pulsates, but never falls to zero volts.
Single phase produces less average power. Single phase pulsates, and fall to zero volts.
Motors and equipment run more efficiency with 3-phase
3-phase water heater elements can run 3 elements in one/ 3U elements
Generator and turbine

Generator and turbine 

High pressure steam explosion accelerates turbine

Typical turbine used in coal-fired power plant
Coal or gas or nuclear rod boils water into steam
High pressure steam explosion accelerates turbine

Turbine rotates generator
Backup diesel generators and Gas engines can also produce electricity without steam. Using water to cool engine.
Generator in US rotates at 60 cycles per second
Output is 3-phase 60 Hz electricity
See illustration of coal-fired plant
Web link
Larger image

WYE generator/ line and phase voltages

The end of each coil is joined together, so this is a WYE generator.
Power is transmitted over 3 Hot Line wires that are accompanied by Neutral wire.
Line voltage: Voltage from line1 to line2 is same as line1 to line3 is same as line2 to line3.
Phase voltage is any of the Lines to Neutral.
Phase voltage is calculated by formula: Line voltage 1.732 = Phase voltage.
So if line-to-line voltage is 208V, then phase voltage is 120V

Generator can be powered by steam explosion, or back up diesel engine, or falling water etc.
Center coil is electro-magnet with north and south pole.
The center coil rotates
Three stationary coils are located inside the generator, each at exactly 120 angle from each other. Each coil  identical.
Each of the 3 coils is connected to Neutral wire that is connected to all 3 coils
One hot wire comes off each coil... line 1, line 2, and line 3... these wires become the 3-phase output along transmission lines.
Small single-phase generators are different. They use a magnet, and the coil rotates in the center between the magnets.
Small generators can be used to provide electricity to larger and larger generators, until there is enough voltage to magnetize the center coil of a power plant generator.
As much as 25% of the electricity generated by a power plant can be consumed by the center coils of power plant generators.
If all the generators go out, then electricity must be brought in from other power plants to get started again.
Illustration shows coil 1-2-3 wired in parallel, or a WYE configuration
Identify transformer wiring
WA Parrish coal-fired power plant
Larger image

WA Parrish coal-fired power plant

Water is boiled until it explodes into steam

With Smither's Lake in foreground. Located outside Houston Texas
Water is pumped from Brazos River to fill lake. Pump is located in Rosenberg, several miles away, at a sharp bend in the River where the channel runs deep.
Water is key for electric power generation. No water, no electricity.
During drought years, water for power plant has priority. No water is available for rice farmers. Rice fields sit fallow or are converted to other dry-farm crops such as cotton.

See illustration of coal-fired plant

Smither's Lake is man-made lake. Water is used to cool parts and run turbine.
Some of the water is recycled, while other water is not.
Coal trains arrive from Wyoming and dump coal
Bulldozers move coal into piles that feed into conveyors
Coal is burned
Water is heated into steam
Water turning into steam releases massive amount of energy called steam explosion
Steam explosion accelerates turbine
Turbine rotates generator at 60 cycles per second
Electricity leaves power plant
Larger image
Transmission substation is located at power plant

Electricity leaves power plant

Generator produces high-amperage AC electricity that has a low voltage
It is not economical to transmit high-amperage electricity... because wires must be larger, towers moved closer, larger insulators, heavier switchgear, and more heat loss... causing more expense and shorter transmission distance.

So electricity from generator is sent to Transmission Substation located at power plant
Transmission Substation uses Step-Up transformers.
Step-up transformers raise voltage and reduce amperage.
Volts x amps = watts is basic formula: When volts are increased, then amps are decreased.
Step up transformer decreases Amperage.
While Voltage is increased
So Low amperage/ high voltage electricity leaves power station
Lower amperage means less heat loss during transmission.
Electric power distribution system operation 1990/ pdf
Power lines leave power plant
Larger image
Larger image
Larger image
Other large image
Another image

Many power lines leave power plant

Large towers might carry 500 Kv or 500,000 volts
Shorter wooden towers might carry 115 Kv to 230 Kv
Wide corridor of land is needed for power lines leaving WA Parrish power plant en route to Houston and surrounding areas

This group of wires is headed to Houston/ Harris Co and Fort Bend Co on a wide corridor of land.
Other towers leave power plant and go different directions.
Use Google Earth to view local power station, and trace wires to local sub-stations. And then follow wires into each town and neighborhood, and to more substations to end user

Electricity is a wave that travels at the speed of light (approximately)
If AC electricity is not consumed at moment when available, it is wasted. Unless the AC is converted to DC and stored in a battery.
Cell phone and laptop batteries store AC power.
Electric water heater is indirect way to store electric power. Water stays hot in tank for many hours after power is off.
Transmission tower
Larger image 
 Larger image2
Original image

Each tower has groups of 3 hot wires

This tower has 12 hot wires, plus 2 system neutral wires located top of tower.
The number of hot wires on tower can be divided evenly by 3, since tower is transmitting 3-phase power
Groups of three wires leave power plant substation attached to transmission towers
Example tower on left has 12 Hot wires plus 2 Neutral wires at very top. Each transmission tower and pole are grounded

Transmission tower ground wire

Each tower is grounded at base of tower on all 4 legs

Transmission tower ground wire

Each tower and pole is grounded at base of pole or tower.
4-legged tower will have ground at each leg.
Each type of soil presents different resistance to ground. Low resistance is best since it will conduct electrical short or lightning strike best. Moist clay soils and salty soils offer less resistance to ground.... the ground rod is driven deep enough to reach permanent dampness. Dry rocky or sandy soils have higher resistance to ground and may require more ground rods in parallel, or an array of parallel ground rods, or a continuous ground cable that connects multiple towers together. Frozen soils are non-conductive and offer greatest resistance to ground. Formulas and measurements are used to determine the type of grounding that is necessary.
Ground wire increases reliability of grid, preventing excessive voltage peaks during disturbances.
System neutral wires at top of tower connect to smaller ground wire that runs to ground connection at base of each tower. Neutral wires are generally larger than ground wires.
Depth of ground connection into soil is determined by type and conductivity of local soils and standard electric practice. Dry, loose and rocky soils are less conductive than fine-grain wet compact soils, high salt content of soil increases ground conductivity etc... so each region must be assessed for proper grounding method based on soil testing and established formulas. Array of ground rods increases grounding and resistance to surge caused by lightning etc.
Transmission tower
Larger image 

System neutral/ or static wire

System neutral wire is present on each pole and tower throughout transmission, sub transmission and distribution.
System neutral- ground array is used to stabilize the grid. Neutral and ground are established at each substation, and at each pole and at final user location. For example each home and business has a ground rod. Each pole carries a neutral that is bonded to the ground rod located at base of pole.
Neutral is important for grounding and for 3-phase transformer configurations, and single-phase household power.

System neutral is connected to ground wire at each tower and pole throughout grid.
The neutral wire connects all ground wires together into one giant array across the grid.
The neutral wire, when at top, acts like a shield against lightning strike, called a static wire
Air is a good insulator. As a result, the electrical charge carried in storm clouds cannot easily equalize itself with the ground.
Electricity is the flow of electrons from unequally charged materials. Insulators like breathable-air stop the flow of electrons until the charge becomes great enough to overcome the insulation. All electricity wants to find route to ground to equalize the electric charge. When overhead storm clouds carry a charge, the electrons in the clouds are not equal to the charge on the ground below. The result is a buildup of charge to the point where the flow of electrons will pass through the insulation provided by air. When that happen, there is a lightning bolt. The lightning will often strike highest point like a tree, house on hilltop, or transmission tower. =The static wire or system neutral is directly grounded with a ground wire, or series of ground wires, at each tower or pole. This ground wire gives the lightning an easy route to ground thus reducing damage caused by lightning.
If the lightning carries more voltage than the ground wire can absorb, there is a flashover onto the power wires, or hot wires. The flashover causes relays to activate and shut down the line.
An OPTICAL GROUND WIRE is a static wire with fiber optic cables embedded in the core for use as a communications path.
Power transmission lines
Larger image

Transmission towers located in Sugarland Texas

Located near W. A. Parrish generating station in Thompsons Texas

Electricity arose from advancements in all sciences across many centuries.
Each advancement was supported by climate, food production, governments, education, writing, printing, and increasing population.
It took millions of hours to invent electricity.
Today, it takes millions of hours each year to produce, manage and maintain electric power.
Imagine the number of labor-hours needed to cut grass along transmission corridors.
Power companies are finding ways to re-purpose transmission corridors into commercial and recreational areas without endangering the electric grid.
Insulated standoff

Insulated stand-offs prevent electrifying tower

Each transmission wire must be insulated away from tower or pole
Transmission wires are bare
Wires cannot come into contact with poles or trees, or else electricity will short to ground, causing possible fire and tripped fuse, loud crack sound like lightning
Larger-longer insulators indicate higher voltage

pulling new wire
Pulling electric wire/ photos

New wire is added

Trucks and linesmen are needed to pull new wire from pole to pole
As electric consumption increases, more wire is added
Diameter of wire and material used for wire is based on voltage and cost vrs transmission loss
Pulling electric wire/ photos
Identify power pole parts
Wires arrive at distribution substation
Larger image
Another image

Wires from power plant arrive at Distribution Substation

Wires leave power plant and travel to distribution substations
Distribution substations can be located by following power lines
Wires from one distribution substation also travel to other substations
Follow wire using google earth to see complexity of distribution

Substations generally re-distribute power onto many smaller poles going several directions
The smaller poles have lower voltage than incoming towers

Smaller power co-generating stations are located alongside transmission lines to boost power during peak demand.
Small natural gas-powered generation stations can be brought online quickly to meet demand.
Water for small generation plants can be from water wells

Co-generation is the fastest growing segment of electric generation. Many feel that small co-generation plants will meet demand for future electricity. The capitalist system requires growth to avoid recession and depression. Co-generation plants strategically placed can ensure essential industries receive power, while other less essential areas experience electric shortage.
Distribution Substation
Larger image of substation
Larger image

Distribution Substation

Example shows substation fed by wires arriving directly from power plant
Substation might receive 500,000 volts from generator
Voltage is divided up and sent out on several lower-voltage lines

With new growth, new substations must be added
electric substation
Larger image

3-phase connects to Distribution Substation

Electricity from power plant to distribution substation
Larger image

Electricity from power plant to distribution substation

Illustration shows general concept 1) power-plant, 2) power plant substation with step-up transformers, 3) 500 Kv 3-phase power traveling along transmission towers, 4) 3-phase power arriving at distribution substation with step-down transformers, 5) 69Kv 3-phase power leaving substation on wood poles going to local businesses and homes.
Voltages vary.

Groups of three Hot wires arrive at distribution substation
Substation is for illustrative purpose and does not show all connections or activity

High amperage is bad for transmission because of heat loss, but high amperage is needed by end user
Very high voltage is good for transmission, but lower voltage is good for end user
Transformers solve the amperage-voltage problem
There is inverse relationship between volts and amps

Basic electric formula is Volts x Amps = Watts. Volts and Amps are inversely proportional.
When voltage is reduced, amperage is increased. The reverse is also true.
Electric company can use step-down transformers that reduce voltage and raise amperage. High amperage is needed at each business and home.
Electric company can use step-up transformers that increase voltage and lower amperage. Lower amperage means less heat on the wire, and is good for long-distance transmission.
Step up and step down transformers can be used anywhere as needed
Electric power distribution system operation 1990/ pdf
Power lines leave substation
Larger image

Many poles leave substation, traveling to each business and neighborhood 

Wires from substation branch off many directions on many wooden poles, sending power all directions
Power can travel many miles from substation to local towns, or substation can be located near town, or near neighborhoods etc

Power poles shown image on left travel to local neighborhoods and businesses.

Follow power lines using google earth to reveal complexity of distribution network
Usually poles leaving substation carry several groups of 3-wires
Poles are generally wood, but can be steel. Voltages vary by type of tower, pole, and height from ground
Example wood pole might carry 115 Kv or 115,000 volts, while steel tower might carry 230 Kv or 230,000 volts or more
Each pole has ground wire running down pole and into the ground

Power lines leave substation
Larger image
These power poles go to another substation

Other poles leave substation, traveling to other substations

The line of poles seen in photo on left, leave substation pictured above.
The line of poles travel 15 miles to another substation, and then on to another substation.
Secondary substations also feed local lines.

This power line also feeds another substation which has step-down transformers.
At this point, the transformers increase voltage and lower the amperage, and then the power is again transmitted on tall steel towers to yet another substation with step-down transformers for local power consumption.
ground wire             Ground wire
Larger image                                      Larger image      
ground rod
Larger image  

Each pole has ground wire

Ground wire is normally smaller than wires that carry power.
Grounding increases reliability of service.
Ground prevents excessive voltage peaks, provides ground connection for system neutral, and discharge path for surge arrestors.
Ground protects people who work on and use electricity.
Proper grounding helps mitigate damage from lightning.
Without a ground wire, overvoltages and other disturbances damage equipment at substation and end user.
Substations generally have multiple grounds to overcome resistivity of soil.
Soils that are warm, tightly grained, wet, and have high levels of dissolved salt offer less resistance to ground.
Loose, coarse, freezing, dry soils with gravel and low salt content offer more resistance to ground.
High pressure means less ground resistance.
Different regions have different grounding specifications.
Why you need ground wire in home
3 phase power lines
Larger image
Another image

3 phase arrives at local business

3 wires arrive at business

3 Hot power lines 1-2-3 on pole
Lines travel down street from pole to pole.
Drop lines from each Hot wire sends power to transformers: a-b-c
3-phase power
Larger image with more detailed labeling
There are many different transformer configurations used to make different voltages
Each installation follows same general pattern
3-phase power
Larger image
There are many different transformer configurations used to make different voltages
Each installation follows same general pattern
Transformer wiring
Larger image
Original image

Transformer wiring/ how to identify transformer wiring

Image shows Delta Primary and 4-wire WYE Secondary
Primary is Delta: How do we know? Each hot wire connects to two transformers.... so they are wired in series
Secondary is WYE. One wire connects to all three transformers, and to Neutral. One wire from each transformer is Hot... so they are wired in parallel
System neutral connects to Neutral and ground
There are many different transformer configurations

This is 'most common type of wiring' because Delta has lower amps/ meaning less heat, so insulation on primary coil is less expensive.

Transformers can be wired different ways depending on the incoming electric supply and end user need.
Two key factors for the grid are economic performance and reliability.
Reliability is necessary because electricity must run clean without big-voltage spikes and low-voltage brownouts. Otherwise motors and HVAC equipment will have shorter lifespan.

Transformer configurations
Transformer manuals
Identify more illustrations of transformer wirings
3 phase surge suppression
Larger image

Capacitor bank on 3-phase distribution line

This 3-phase line is 7200 volts and supplies power to multiple neighborhoods, including my neighborhood
These lines also supply power to several businesses that use motors
With several motors or inductive loads on the line, it will reduce power factor on the line.
Transformers without load also create reduced power factor.

Inductive loads such as motors, contactor coils, relays.... consume large amounts of amperage before voltage during start up ... causing voltage to lag behind amperage.
Resistive loads such as lights and heaters...  consume voltage and amperage at same time, without lag.
Capacitor banks help solve problems caused by voltage lag.

This protects motors of all kinds from surge, including the motors at local businesses, and homeowner appliances and HVAC unit.

Neutral wire at top of pole not shown.

Read about surge suppression for residential and commercial
Types of 3-phase
General types of  phase electricity produced by transformers for use in homes and business, both single phase and 3-phase
More illustrations scroll down to bottom
How to wire 3-phase electric
3 phase service
Larger image
Different image

Example 3 phase service

Drop wires connect to insulators, and then loop into weatherhead, and down conduit mast into meter box
Image on left shows Meter box, 3-phase Meter, and breaker box
The box might contain cut off breaker, and not be the final breaker box

Wires drop down conduit mast and enter meter box.
There are many different services, and voltages, and wiring can vary to meet code.

Larger image

Example 3 phase service

3 phase weatherhead
Example 3 phase weatherhead
Larger image
Larger image

Example 3 phase service

Showing secondary service wires, service rack with 4 insulators, weatherhead, and service conduit
3-phase meter

3-phase meter has 7 prongs

3 Phase meters have 7 prongs that stab into meter box
Unlike household meter that has 4 prongs

3 hot wires from transformers attach to top three prongs
Neutral attaches to lone middle prong
3 hot wires going to business attach to bottom 3 prongs
3-phase meter
Larger image

3-phase meter box

Delta and Wye transformer configurations are wired same.
Illustration on left shows typical 3-phase meter wiring.
In the case of high-leg delta, the wild leg or high-leg connects to top right or Line 3 in illustration.
High-leg delta is a specific transformer configuration ... each hot wire is called a leg.
With high leg delta, the wild leg connects to top right terminal so it's location is identified since this wire carries different voltage potentials than other legs.

Ground wire connects to same terminal where neutral connects
Ground wire cannot be used as neutral, since ground wire is usually smaller gauge than neutral wire.
Neutral wire is same gauge as hot wires so it can safely carry same voltage as each hot wire.
3-phase service panel
Larger image
Neutral and Ground wires not shown
Neutral wire enters with other three wires, and connects to busbar on left side of panel
Neutral wires inside building connect to neutral busbar.
Ground wires connect to busbar on right

3-phase service panel/ Neutral and Ground not shown

3-phase Power passes through a 3-phase electric meter that registers electric usage for billing.
From the meter, power enters a panel box, and connects to 3-pole  main breaker
3-pole means there are 3 places for wires to connect. And each pole is electrically separated from other poles.

Main breaker feeds each hot wire to separate hot busbar.
So there are 3 Hot busbars, each electrically separated from the other, and each carries power from one Hot wire
3-pole circuit breakers snap down over all 3 busbars, drawing power from each busbar, and then 3 wires leave breaker and go to motor switch, or other use etc.

How to wire 3-phase electric
See wiring for 3-phase non-balanced water heater

Example shows timer controlling 3-phase load

How to wire 3-phase timers
How to wire T100 series Intermatic timers

power plant to house electricity
Larger image
Read about basic household electric

Converting 3-phase to single-phase household power

One Hot wire is taken from 3-phase power lines
The system neutral and 1 Hot wire are used to make single-phase power

Residential single-phase power
Basic household electric
Troubleshoot household electric

Power plant to house electricity

Illustration shows distribution grid from power plant to individual home
Voltage and amperage are inversely proportional.
Volts x amps = watts.
When volts are reduced at at substation transformer, amps are increased.
High amps are needed at the end user, because amps are the heat that does the work.
However high amps cause heat loss during transmission.
That's why transformer substations are needed: because they control volts and amps.
Each time voltage is reduced, the amperage is increased... and higher amps mean transmission distance is reduced.
So the 500,000 volt lines are used to distribute power long distance.
69,000 volt lines are used for shorter distances.
7,200 volt for local distribution.
Below 4000 volts, the distribution is inefficient because high amps cause too much heat loss

Generally, in the US, each home has a transformer that converts 7200 volt Hot and Neutral into split phase 120-240 volt service.
The home receive low voltage, high amperage
Each home has a transformer that converts 7200 volts into 120-240 single or split phase electricity
Sometimes more than 1 home will share a transformer... result is dimmed lights, or voltage drop each time heavy equipment such as HVAC turns on.



Transformers can convert electricity many ways.

Transformer manuals
Transforming electricity is limited only by physics governing natural world.
For example using a transformer, high voltage and low amperage can be converted to lower voltage and higher amperage used inside each home. There is inverse relationship between volts and amps shown in following formula: Volts x amps = watts.
See electrical formulas

High voltage 3-phase from the power plant can be converted into many different 3-phase voltages depending on which transformer is used. Read about Delta and Wye
The reverse is also possible: Using a transformer, single phase residential power can be converted into certain types of 3-phase.
Since solar generated power is DC (direct current) instead of AC (alternating current) a transformer called an inverter will convert DC solar power into more useful AC power. Different inverter voltages are available by wiring the transformer differently.

Transformers are 95-98% efficient

Transformers have primary side and secondary side
Primary side receives full power from generator at all times.
Secondary side supplies power to homes and businesses that do not draw full power at all times
As a result the overall efficiency of the grid is about generating the power so use and generation balance.
circuit breaker resources

Circuit breaker resources

Water heater is tripping breaker
How to replace circuit breaker
How to wire gfci
Can AC breaker be used for DC breaker
How to reset circuit breaker
Not enough space for circuit breakers/ use tandem
Circuit breakers
How to install subpanel
Why you need ground wire
See inside breaker box
How to wire safety switch
How to wire whole house surge protector
Figure volts amps and watts
Figure correct wire and breaker
Types of surge protection
Price of water

No water = No electricity

Power company boils water using hydrocarbon fuel, or nuclear rod.
When water turns to steam, a steam explosion occurs.
The explosive power of steam is used to rotate turbine which turns generator.
This applies to coal-fired, gas-fired, and nuclear power plants

Bath uses 20 gallons water (12-15 gallons hot water).
Shower uses 10 gallons (5-8 gallons hot water)
How much money is bath water worth?
Growth and electricity consumption
3-phase wiring
Larger image

How to wire 3-phase outlets and surge protection

How to wire 3-phase electric
Support the economy:
Buy water heaters  from my associate links:
50 gallon Gas water heaters at Amazon
40 gallon gas water heaters at Amazon
50 gallon Electric water heaters at Amazon
40 gallon electric water heaters at Amazon
Hybrid / heat pump/ water heaters at Amazon

How to install gas water heater
How to install electric water heater
Troubleshoot gas water heater
Troubleshoot electric water heater
Point of use water heaters
Troubleshoot Gas valves with manuals
Icon gas valve

Install and troubleshoot garbage disposal Waste King disposal
Install point of use water heater

How to wire tankless electric
Point of use water heater

Anode rods anode rods
Recirculation system

Tankless recirculation
Point of use water heater
Type 1 and type 2 surge protection surge protection

Gas and electric water heaters Buy

Industrial supplies

Home Improvement


Lab and scientific
Buy Tools
Black and Decker
SK tools

Saws and saw blades
Compare box timers
DPDT timers
Control water heater w/ Z-wave

Control with WiFi
Intermatic control centers Resource:
Control centers:
+ manuals and parts

All control centers and parts

Including Z-wave
programmable timer Resource:
Compare programmable timers
Compare countdown timers
Delay timers

Din rail


How to replace element
How to test element
How to install electric water heater

Troubleshoot electric water heater
How to remove old element
Marathon water heater elements
Enter Amazon from my links

E-mail: geno03245w@gmail.com
My response might end up in spam folder, check email folders
Privacy policy
Author page/ My Books
Back to top